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ABSTRACT Amoebae are protists that have complicated relationships with bacteria,
covering the whole spectrum of symbiosis. Amoeba-bacterium interactions contrib-
ute to the study of predation, symbiosis, pathogenesis, and human health. Given the
complexity of their relationships, it is necessary to understand the ecology and evo-
lution of their interactions. In this paper, we provide an updated review of the cur-
rent understanding of amoeba-bacterium interactions. We start by discussing the di-
versity of amoebae and their bacterial partners. We also define three types of
ecological interactions between amoebae and bacteria and discuss their different
outcomes. Finally, we focus on the implications of amoeba-bacterium interactions on
human health, horizontal gene transfer, drinking water safety, and the evolution of
symbiosis. In conclusion, amoeba-bacterium interactions are excellent model systems
to investigate a wide range of scientific questions. Future studies should utilize ad-
vanced techniques to address research gaps, such as detecting hidden diversity, lack
of amoeba genomes, and the impacts of amoeba predation on the microbiome.
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WHAT ARE AMOEBAE?

Amoebae are protists that move using pseudopods and feed by phagocytosis. They
are widespread and mostly found in water, soil, and air. A German naturalist,

August Johann Rösel von Rosenhof, recorded the first known amoeba in 1755, which
is similar to Amoeba proteus according to his illustrations. Traditional classification
placed amoebae in the Sarcodina group based on morphology and further divided
them into Rhizopodea and Actinopodea, depending on the type of pseudopodia (1).
Such classification was widely accepted and used because it was convenient, and no
alternative system existed at that time (2). Many East Asian translations, such as
Chinese, still use it.

However, molecular phylogenetic studies using marker genes such as the 18S rRNA
have shown that Sarcodina is not a monophyletic group. Instead, they are distributed
widely across the eukaryote phylogeny and show great diversity, including Amoebozoa,
Rhizaria, Excavata, Heterokonta, Alveolata, Opisthokonta, and other ungrouped species
(3) (Fig. 1, Table 1). Among them, Amoebozoa is the only group that solely consists of
amoebae, and it is also the most diverse group, containing over 17,000 species that
differ in their lifestyles (free-living versus parasitic) (4, 5). Other groups of amoebae also
show great diversity. For instance, Rhizaria contains filose amoebae, whose filose
pseudopods are narrow and tapering, and all those that produce shells. The Heterolo-
bosea in the Excavata supergroups include amoebae that can transform between
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amoeboid and flagellate forms (4). Amoebae span a wide range of sizes, ranging from
several to thousands of micrometers, and their size mostly determines their predation
(Fig. 1B). For instance, in testate amoebae, the prey size is limited by their shell size (6).
In general, different amoebae feed on bacteria, algae, flagellates, and ciliates depend-
ing on their sizes.

Amoebae are essential components of aquatic and terrestrial ecosystems and play
a vital role in the dynamics of microbial communities, nutrient cycling, and energy flow
(7, 8). They are also a potential threat to human health, as some of them are pathogenic
or even lethal to humans (7, 9, 10). There are several excellent reviews on amoebae and
their bacterial symbionts (11–15). In recent years, amoeba-bacterium interactions have
attracted increasing interest in a wide range of disciplines, including molecular and
cellular biology, medicine, environmental science, ecology, and evolution (16–25).
Therefore, we want to provide an updated review of the current understanding of
amoeba-bacterium interactions, with a particular focus on the ecological and evolu-
tionary aspects. We identify key research areas and gaps and highlight how ecological-
evolutionary interaction could increase our understanding of the role of amoeba-
bacterium interactions in both nature and the laboratory.

WHY DO AMOEBA-BACTERIUM INTERACTIONS MATTER?

Long before bacteria interacted with animals and humans, they interacted with
amoebae (9). Therefore, it is not surprising that amoeba-bacterium interactions are

FIG 1 Schematic representation of amoeba diversity. (A) Amoebae are spread in several supergroups,
including Amoebozoa, Rhizaria, Excavata, Heterokonta, Alveolata, Opisthokonta, and other ungrouped
species. Amoebozoa (black) is the only group that solely consists of amoebae. The tree topology is from
previous classifications (3, 139). (B) Amoebae show considerable variation in their sizes.
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complex and cover the whole range of symbiosis (9). Amoebae have evolved different
mechanisms to find, kill, and digest bacteria, while bacteria also developed strategies
to resist amoeba predation and, in return, sometimes to infect and kill amoebae.

We can learn a lot from the long-term coevolution between amoebae and bacteria.
First, it gives us a unique chance to study bacterium-eukaryote interactions. A key
challenge in ecology and evolutionary biology is to disentangle the relationship and
coevolution between the eukaryotic host and its associated bacteria, which often
requires the recombination of different partners. However, it is challenging to separate,
mix, and match the host with its bacteria using existing model systems, which limits our
ability to understand the interaction and coevolution between them. Amoeba-

TABLE 1 List of nonpredatory interactions between amoebae and bacteria

Supergroups and major
genera Bacteria Reference

Amoebozoa
Acanthamoeba Caedibacter, “Jidaibacter,” “Odysella,” “Paracaedibacter,” Procabacter, “Berkiella,”

Pseudomonas, Stenotrophomonas, Flavobacterium, Amoebophilus, Neochlamydia,
Parachlamydia, Protochlamydia, Listeria, Mycobacterium, Afipia, Ralstonia, Rickettsia,
Simkania, Salmonella, Yersinia, Campylobacter, Arcobacter, Staphylococcus,
Mobiluncus, Bacillus, Burkholderia, Escherichia, Helicobacter, Porphyromonas,
Prevotella, Chlamydophila, Waddlia, Coxiella, Francisella

7, 13, 14,
16, 136,
148

Dictyostelium Legionella, Escherichia, Klebsiella, Paraburkholderia, Pseudomonas, Mycobacterium,
Bordetella, Salmonella

18, 19, 21–
23, 99,
101, 102,
149, 150

Hartmannella “Nucleicultrix,” Legionella, Pseudomonas, Simkania, Neochlamydia, Bacillus 7, 14, 151
Echinamoebae Pseudomonas, Caulobacter 14, 84
Balamuthia Simkania 152
Vannellae “Occultobacter,” “Mesochlamydia” 153, 154
Saccamoebae “Mesochlamydia,” Ehrlichia 154, 155
Cochliopodium “Cochliophilus” 156
Pelomyxa Syntrophorhabdus, Rhodococcus 157
Entamoeba Escherichia 44
Amoeba Legionella 158
Chaos
Thecamoebae

Rhizaria
Paulinella “Plastid”
Gyromitus
Vampyrella
Excavata
Naegleria Stenotrophomonas, Legionella, Protochlamydia, Simkania, Neochlamydia, Acidovorax,

Flavobacterium
14, 120, 136

Sawyeria
Psalteriomonas Methanobacterium 159
Vahlkampfia
Stygamoeba
Dientamoeba
Heteramoeba
Tulamoeba
Heterokonta
Chrysamoeba

Opisthokonta
Nuclearia Planktothrix, Ovatusbacter 160, 161
Micronuclearia
Alveolata
Dinamoeba
Pfiesteria

Others
Astramoeba
Dientamoeba
Malamoeba
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bacterium interactions can provide a simple and tractable model system to address
these issues (19–21, 26–28). Second, it gives us a model system to investigate how
intracellular endosymbiosis evolves. Intracellular endosymbionts have evolved special-
ized lifestyles to survive within the host cells (29). The transition from free-living to
intracellular lifestyles is often accompanied by genome reduction (30, 31). Many
isolated bacteria, such as Rickettsia and Wolbachia species, showed a significant ge-
nome reduction in amoebae. Further analysis suggested that amoebae serve as a
melting pot that allows diverse bacteria to adapt to the intracellular lifestyle or create
new pathogens (11, 32). Finally, it can provide some insights into human pathogens
and diseases. Amoebae can also serve as environmental reservoirs for many human
pathogens (11, 12, 14). In addition, many of the core mechanisms used by amoebae to
ingest and kill bacteria have been evolutionarily conserved in human phagocytic cells
(33, 34). Therefore, understanding the evolution of amoeba-bacterium interactions will
also increase our understanding of amoebae’s role in the origin, spread, and control of
infectious diseases.

HOW DO AMOEBAE INTERACT WITH BACTERIA?

Amoeba-bacterium interactions cover the whole spectrum of symbiotic relation-
ships, ranging from antagonism to mutualism. In this review, we mainly discuss three
types of ecological interactions (Fig. 2): predation, parasitism, and mutualism. However,
from an evolutionary view, it is essential to note that these interactions are continuous
rather than discrete, and different interactions can evolve from one to another under
selective pressures (Fig. 2).

Predation. Predation is the dominant relationship that amoebae have with bacteria.
Amoeba predation can be a powerful structuring force for the natural bacterial com-
munity (35). Protist consumption, including by amoebae, is a significant source of
bacterial mortality in most aquatic and terrestrial ecosystems (36). Bacteria should often
be under strong selection pressure to evade predation and deploy a wide range of

FIG 2 Diagram of ecological interactions between amoebae and bacteria. The figure represents three
general types of amoeba-bacterium interactions as well as their impacts. Bacteria can have different
interactions with amoebae, ranging from antagonism to mutualism. Their interactions also can move
from one category to another, making this a great system to investigate how antagonistic interactions
evolve to be more mutualistic. Blue, bacterial prey. Red, pathogenic bacteria that can replicate and
escape to the cytosol and the environment. Green, endosymbionts of amoebae.
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chemicals that serve that purpose. Resistance to predation may sometimes be the first
step toward pathogenicity and virulence, not just toward predators but to other
eukaryotes (37). Nevertheless, amoebae can consume a vast range of bacteria. The
social amoeba Dictyostelium discoideum grows on the majority of bacteria tested (38,
39). For example, in a study of 159 bacterial isolates collected from soil and fecal
samples containing D. discoideum, 123 supported amoeba growth and development to
some degree (38). The majority were Proteobacteria (alpha, beta, and gamma), but
others were taxonomically distributed in the Bacteroidetes, Firmicutes, and Actinobac-
teria. Similarly, other Dictyostelids have shown generalist abilities (40, 41) as have,
although less thoroughly studied, other Amoebozoans (42–44).

The degree of generalism may be even higher, because some inedible bacteria
become edible when they are at lower densities (37), as might be expected if there are
defensive compounds that get diluted. Similarly, D. discoideum’s own secretions make
it a more effective predator when it is at higher densities (45). Arguably, amoebae may
show a degree of diet generalism far greater than better-known generalists, like birds,
which can eat a wide variety of arthropods. Therefore, amoebae may provide an
interesting system for studying how generalism evolves. Supergeneralist predation
raises the question of how these predators cope with the defenses of so many prey or,
alternatively, why so many prey seem defenseless. The answer is unknown, but D.
discoideum does show quite different transcriptional profiles on different bacteria,
suggesting that it is adjusting its feeding strategies to different prey (46, 47).

Understanding how amoebae differentially impact bacteria also is essential to
evaluating their contribution to ecosystem processes. However, we know very little
about the mechanisms of selective grazing behavior of amoebae. Below we will discuss
the two significant steps of amoeba predation.

(i) Recognition of food bacteria. Recognition of food bacteria is the first step for
a successful hunt. Theoretically, amoebae should be able to sense, recognize, and move
to their food bacteria. They should also need to distinguish and avoid pathogenic
bacteria. However, these are hypotheses that need experimental testing. Several stud-
ies reported that the social amoeba D. discoideum had different gene expression
profiles when exposed to different bacteria (46–48), and a different set of genes were
activated when they fed on Gram-positive and Gram-negative bacteria (46, 47). A more
recent study reported that Dictyostelium amoebae respond in a highly specific manner
to different bacteria species (47). They were also more attracted to Gram-negative
bacteria in a chemotaxis assay (49). Nevertheless, among these differentially expressed
genes, it is challenging to distinguish metabolic adaptation from bacterial sensing.
Other studies have used random mutagenesis to discover amoeba genes essential for
bacterial sensing, including fspA, tirA, and lrrkA (50–52). For instance, a D. discoideum
amoeba mutant (fspA knockout) cannot grow on noncapsulated Klebsiella pneumoniae,
but it grows well on capsulated LM21 K. pneumoniae, indicating that D. discoideum
amoebae use the fspA gene to recognize K. pneumoniae capsules (51). Another study
found that vps13F had a significant role in bacterial recognition and intracellular killing
in D. discoideum (53). Taken together, these studies suggest that D. discoideum does
have specific mechanisms to sense bacteria.

However, it is essential to note that most of the studies focused on D. discoideum
amoebae, and we know very little about the sensing mechanisms in other groups
of amoebae. One study compared the foraging strategies between two commonly used
amoebae, Acanthamoeba and Dictyostelium (54). Surprisingly, they found that, unlike D.
discoideum, Acanthamoeba did not use chemotaxis to sense its food bacteria. Given the
vast diversity of amoebae, this raises the question of how variable the foraging
strategies are across the major clades of amoebae.

(ii) Molecular mechanisms of intracellular killing. Amoebae are very effective
bacterial killers (33). They track bacteria through chemotaxis and kill them using
phagocytosis. Phagocytosis is the process by which cells ingest or engulf other cells
or particles, and amoebae can engulf and kill most bacteria. After engulfment, the
phagosome undergoes maturation, making it a highly acidic, degradative, and oxida-
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tive compartment (55). Amoebae use various strategies to kill bacteria. Phagosome
acidification is the first step, in which V-ATPase plays a central role (56). In addition, the
phagosome also contains proteases (57), hydrolases (58), certain metals (59, 60), and
ROS (reactive oxygen species) (61), which combine to kill and break down bacteria (33,
60, 62). With all these bacterial control strategies, amoebae can effectively kill and
digest bacteria.

Dozens of genes have been reported to play essential roles in the intracellular killing
of amoebae using two different strategies. The first strategy is to find the orthologues
of the mammalian system in amoeba genomes, which has successfully identified genes
such as alyA (58), catD (57), lvsB (63), nox2 (61), nramp (64), and wshA (65) in D.
discoideum. For example, nox2 is crucial for the oxidative burst of phagocytic cells and
plays a significant role in intracellular killing in mammals (66). Three orthologues of
nox2 have been identified in the D. discoideum genome (61). Another strategy is to use
killing-deficient mutants to discover novel killing genes. Random screens of D. discoi-
deum mutants have found that fspA (51), kil1 (48), kil2 (67), phg1a (68), and tirA (50)
genes played an essential role in the intracellular killing. Still, we are just beginning to
understand this complex mechanism. For instance, in D. discoideum phg1, kil1, and kil2
are essential for the intracellular killing of K. pneumoniae (a common food bacterium in
the laboratory), but they are not necessary for Pseudomonas aeruginosa and Bacillus
subtilis (33). This indicates that D. discoideum has independent mechanisms to kill
different bacteria. Bacteria of the same species also can differ radically in edibility.
Future studies should investigate the molecular mechanisms of intracellular killing in
other groups of amoebae. Given the huge diversity across amoebae, an educated guess
would be that many new intracellular killing genes will be identified.

Parasitic interactions. Predation is a potent agent of natural selection; therefore,
bacteria will inevitably evolve to adapt to it, and some even infect amoebae in return.
These bacteria are called amoeba-resisting bacteria (ARBs) because they have evolved
to become resistant to amoebae. ARBs can escape the internalization of amoeba
feeding or can survive, replicate, and exit amoebae after internalization (39). ARBs that
have evolved to infect amoebae are of particular interest to microbiologists and
medical researchers because many are human pathogens.

(i) Legionella pneumophila. Among ARBs, L. pneumophila is one of the best-studied
systems (69–73). It is ubiquitous and has evolved mechanisms to infect and replicate
within amoebae and humans, causing pneumonia termed Legionnaires’ disease. Amoe-
bae are the environmental reservoirs for L. pneumophila and play an essential role in
human infection (74, 75). The adaptation and coevolution between L. pneumophila and
amoebae have shaped L. pneumophila’s genome, resulting in a large number of effector
proteins that play an essential role in its intracellular lifestyle in human macrophages
(76). For example, L. pneumophila uses an F-box effector to exploit the farnesylation
machinery of eukaryotic host cells (77). L. pneumophila also can promote the host’s
proteasomal degradation for its benefit and can affect the ubiquitination pathway (69,
78, 79). More recently, a study found that L. pneumophila injects LamA, a Legionella
amylase, into the cytosol of human macrophages and amoebae, which degrades host
cell glycogen (80). LamA interferes with amoeba host-specific processes (subverts
encystation of the amoebae) and triggers accidental inflammatory responses in humans
(80). Finally, L. pneumophila can also gain protection against disinfection processes
from amoebae (81). These results suggest that amoeba-Legionella is a useful model
system that increases our understanding of the parasitic interactions between amoebae
and pathogens.

(ii) Mycobacteria. Mycobacterium, a genus of Actinobacteria, contains pathogens
such as Mycobacterium tuberculosis, M. ulcerans, M. leprae, and other nontuberculous
mycobacteria (NTM). They can cause severe diseases such as tuberculosis and leprosy
in humans. In nature, mycobacteria frequently have been isolated from amoebae in
different habitats, including drinking water systems (82–84), hospitals (85), and cooling
towers (86). Many studies try to disentangle the interactions between amoebae and
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mycobacteria. One study found that M. tuberculosis and M. marinum can escape from
their amoeba hosts through nonlytic ejection (23). Interestingly, M. avium did not eject
but remained within its amoeba host (23). The following study suggested that nonlytic
transmission is dependent on the autophagy pathway (22). A recent study reported
that Mycobacterium bovis, part of the M. tuberculosis complex, can evade D. discoideum
predation through the ESX-1 type VII secretion system (87). This study also supports the
hypothesis that amoebae are a training ground for pathogens.

NTM can also have complex interactions with amoebae. For instance, the cooccur-
rence of NTM and amoebae has been reported in hospital water networks, and
Mycobacterium avium showed high replication rates only in Acanthamoeba lenticulata
(85). Another study reported the association of NTM and amoebae in the drinking water
network (82). It also has been reported that NTM smaller than 2 �m do not replicate
intracellularly and do not kill amoebal trophozoites, indicating size-correlated relation-
ships between NTM and their amoeba hosts, which implies NTM can interact differently
with amoebae (88).

(iii) Chlamydiae. The Chlamydiae are a phylum of obligate intracellular bacteria.
Some of them are nonpathogenic symbionts, while others are important human
pathogens (89). For instance, Chlamydia trachomatis can cause sexually transmitted
infections and eye disease trachoma (90). Chlamydia pneumoniae infection is related to
arthritis, asthma, and atherosclerosis (91). Chlamydia has been frequently isolated from
amoebae, such as Protochlamydia amoebophila (92), Parachlamydia acanthamoebae
(93), and Neochlamydia hartmanellae (94). Coculture with amoebae also can identify
new Chlamydia species from environmental samples, such as Criblamydia sequanensis,
which was identified from a water sample (95). A recent study found that the chla-
mydial symbiont P. amoebophila can protect its Acanthamoeba castellanii host from L.
pneumophila infection, indicating the interactions between amoebae and chlamydia
may be more complicated than we expect (16). Since many chlamydiae can survive
within amoebae, it is possible that amoebae can serve as shelters and environmental
reservoirs for the transmission of chlamydiae and play a significant role in their
lifecycles and ecology (96).

Mutualistic interactions. Some ARBs established long-term relationships with

amoebae as endosymbionts. Endosymbionts can stably reside within amoeba cells and
survive encystations of the amoebae. For instance, 25% of natural Acanthamoeba
isolates harbor obligate intracellular bacteria (12, 16, 97). However, it is challenging to
disentangle the nature of their interactions, as most of the endosymbionts are uncul-
turable, and they cannot grow outside their hosts. Therefore, most studies rely on
nonculturable techniques, such as 16S rRNA gene sequencing or fluorescence in situ
hybridization (FISH). Empirical studies on the cost and benefit of their interactions are
needed.

To date, one of the best study systems to address the above question is the
symbiosis of the social amoeba D. discoideum. D. discoideum is a soil-dwelling amoeba
that is well known for its social life, consisting of a unicellular amoeboid stage and a
multicellular aggregative stage in which about 20% of cells ultimately die to form a
stalk to help spore dispersal (98). It has been used as a model species in cell biology and
social evolution and is also one of the National Institutes of Health’s 13 model
organisms. Recent studies found that some wild amoeba clones stably associate with
different bacterial partners and use them as food and weapons (21, 26, 27). These
clones are called farmers because they can seed and harvest their crops in new
environments (21, 27). Two clades of inedible Burkholderia bacteria have been found to
induce farming, causing the amoeba host to carry both them and edible crop bacteria
(99–101). One of the clades shows considerable genome reduction (100). These Burk-
holderia organisms are facultative endosymbionts: they can live on their own and
impose some cost on the host (21, 27, 102, 103). These Burkholderia symbionts also can
preferentially find and choose their amoeba partners (18). Further studies find that
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amoeba hosts have evolved mechanisms for host-specific acquired symbionts and
show evidence of partner adaptation between hosts and their symbionts (19, 102).

WHAT WE CAN LEARN FROM AMOEBA-BACTERIUM INTERACTIONS
Human pathogens and diseases. The long history of interactions between amoe-

bae and bacteria can select bacterial virulence traits that lead to the intracellular
adaptation lifestyle (9). Therefore, amoebae can act as an environmental reservoir for
pathogens and enable some ARBs to acquire the ability to infect mammals, including
humans. Increasing studies use amoebae as host models to study human pathogens,
and most studies used Acanthamoeba and Dictyostelium, both of which belong to the
group Amoebozoa.

Using amoebae as host models for human pathogens can provide several insights.
First, we can discover new virulence factors in amoebae using a simple plaque assay.
For instance, the virulence of Pseudomonas aeruginosa was tested using amoebae (104).
Different P. aeruginosa mutants were mixed with amoebae and then were plated on
solid agar. If the strains were virulent, small amoebal lysis plaques would form. Several
virulence factors, such as the quorum-sensing-mediated virulence factor lasR and the
cytotoxin exoU, were discovered in P. aeruginosa (105). Second, we can isolate new
bacterial species and investigate their pathogenicity in amoebae. Using amoebal
coculture or amoebal enrichment, we can discover and isolate new ARBs directly from
environmental samples, which can be used for subsequent pathogenic analysis (106).
Finally, we can use amoebae to study host susceptibility and resistance to pathogenic
infection. For instance, D. discoideum is an ideal model for such purposes because it has
a fully sequenced haploid genome and is easy to manipulate genetically. Many D.
discoideum genes, such as racH (intercellular spreading of mycobacteria), corA (intra-
cellular growth), atg9 (macroautophagy), phg1 (intracellular killing), and kil1 (intracel-
lular killing), have been reported to be essential for its interaction with bacterial
pathogens (106).

HGT. Horizontal gene transfer (HGT) is the transfer of genetic material between
organisms other than reproduction, which is suggested to be a significant driver of
genome evolution (107). Amoeba-bacterium interactions provide us an ideal chance to
investigate interkingdom horizontal gene transfer, as both partners have gained genes
from each other (78, 108, 109). There is plenty of evidence that amoeba-resisting
bacteria acquired genes from their amoeba hosts (108). For instance, L. pneumophila
can infect both amoebae and human macrophages, mediated by Legionella effectors
proteins that play an essential role (76). Among them, L. pneumophila acquired one
effector, legS2, from amoebae (110). This protein is related to the type IV Icm/Dot
secretion system and the mitochondria, which helps L. pneumophila exploit its host
(110). In another case, it has been proposed that Legionella longbeachae also acquired
dhcR7 and dwf, the 7-dehydrocholesterol reductase, from its amoeba hosts (109, 111).

Amoebae can also integrate bacterial genes into their genome through horizontal
gene transfer. In the social amoeba D. discoideum, 18 candidate horizontal gene
transfers have been identified in its genome (112). These transferred domains have
different forms, replacing or adding new functions to D. discoideum’s genome (112). In
another study, the authors found that Acanthamoeba castellanii and Naegleria gruberi
contained more horizontally acquired bacterial genes than Entamoeba histolytica and D.
discoideum (113). These results suggest that horizontal gene transfer is an important
factor shaping the genome of amoebae.

In addition, amoebae can also serve as an environmental niche that allows horizon-
tal gene transfer between intracellular bacteria. For example, a study shows that
Bartonella rattaustraliani and Rhizobium radiobacter can conjugate together within
Acanthamoeba polyphaga, which provides direct evidence of genetic transfer (114).
Another study using a bioinformatics approach finds eight mycobacterial open reading
frames (ORFs) that are likely acquired from ARBs such as Proteobacteria and Firmicutes
(115). These results suggest that amoebae can promote horizontal gene transfer and
contribute to the creation of emerging pathogens.
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Health risk in drinking water systems. Amoebae are widespread in water and
soil, but they have also been found in human-made water systems, such as hospital
water networks, swimming pools, cooling towers, and drinking water systems (10,
82, 116, 117). Some amoebae are pathogenic and even lethal to humans (118, 119).
The discovery of amoebae in drinking water systems is of concern. For example,
four pathogenic Acanthamoeba species (Acanthamoeba culbertsoni, Acanthamoeba
polyphaga, Acanthamoeba castellanii, and Acanthamoeba rhysodes) can infect hu-
mans and lead to keratitis and granulomatous amoebic encephalitis (GAE) (120),
while Naegleria fowleri can infect human brains and causes a fatality rate of 97% in
the United States (119).

In addition to pathogenic amoebae, nonpathogenic amoebae can also pose poten-
tial health risks because of their associations with pathogenic bacteria such as L.
pneumophila (14, 74). In addition, amoebae are found to be resistant to disinfection in
drinking water processes. For instance, Acanthamoeba cysts can resist exposure to up
to 100 mg liter�1 chlorine for 10 min, which means our current drinking water disin-
fection (1 to 2 mg liter �1) will have a limited effect on these amoebae (121). Therefore,
amoebae can transport and even protect a range of waterborne pathogens. Future
studies should investigate the diversity of bacterial pathogens carried by amoebae.

A simple model system for symbiosis and coevolution. Bacterial symbionts have
essential effects on the fitness of eukaryotes, ranging from parasitism to mutualism
(122). To better understand their interactions, we need simple model systems where
the impact of different partners can be understood and manipulated (123). An ideal
study system is the amoebae and their associated bacteria. Amoeba-bacterium inter-
actions provide us a unique chance to study bacterium-eukaryote interactions. For
instance, in social amoeba symbiosis, D. discoideum amoebae carry a minimicrobiome
consisting of several bacteria species (21, 26, 27, 99). These carried bacteria partners can
provide novel traits to their hosts, such as protofarming and defense (21, 26, 27). They
also can have different fitness consequences for their hosts, making this a great system
to investigate cooperation and conflict in both partners. This system is also suitable for
studying how antagonistic interactions evolve to be more mutualistic (19).

Amoeba-bacterium interactions also give us a great chance to study the origin of
the primary plastid. It is hypothesized that the origin of the chloroplast is because a
nonphotosynthetic protist caught photosynthetic cyanobacteria as organelles. A fresh-
water amoeba, Paulinella chromatophora, gives us a unique opportunity to test this idea
experimentally. P. chromatophora has taken two cyanobacteria as organelles, which are
also called chromatophores. The chromatophores are considered organelles because
their division is controlled by amoeba, and their genome is reduced by 2/3 (124–127).
Although reduced, the chromatophore genome is still larger than most plastid ge-
nomes, indicating this endosymbiosis is still under way, which provides an excellent
system to study the origin of organelles.

RESEARCH GAPS AND FUTURE DIRECTIONS
The hidden diversity. Amoebae and their associated bacteria have proven to be

useful study systems. Using traditional methodology and techniques, we have accu-
mulated lots of knowledge over the past few decades. However, there are at least two
levels of hidden diversity that need further investigation.

First, the diversity of amoebae in the environment is mostly unknown. Traditionally,
the cultivation method is widely used for the identification of environmental amoebae.
Axenic culture is one option, but it is laborious, and only a few species have been
cultivated successfully (128–130). Another strategy is to use bacteria as a food source,
as most amoebae are bacterivorous. In those studies, nonnutrient agar is seeded with
microbes such as Escherichia coli, Klebsiella pneumoniae, and even Saccharomyces
cerevisiae (24, 43, 117, 129, 131). Nevertheless, parameters such as food sources, grazing
preference, and growth conditions can significantly affect the outcome of cultivation,
which could create a bias for the real amoeba community.
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A solution is to utilize next-generation sequencing techniques such as metagenom-
ics. Several studies have performed this approach to study amoeba diversity in different
environments (82, 117, 132, 133). Metagenomics is also suitable for large-scale studies,
such as continental and global analyses, which are urgently needed at the moment,
especially for soil amoebae (134, 135). However, there are also drawbacks, such as
primer choice and copy number variations. Until now, no study has compared the
efficacy of primers on amoebae. We also know very little about the variation of copy
numbers (rRNA genes) in different amoebae, which is crucial to correct 18S rRNA gene
sequencing bias. Such information is crucial to reveal the real community and diversity
of amoebae, as the copy number can vary from one amoeba to another and from
trophozoite to cyst. In conclusion, future studies should first address the issues of
primer choice and copy number variations, and next-generation sequencing is the most
promising technique to investigate the diversity of amoebae.

Second, the diversity of bacterial symbionts in amoebae is likely underestimated.
Since all amoebae feed and interact with bacteria, we would expect to find bacterial
symbionts in all major amoeba groups. However, to date, most studies focused on the
group of Amoebozoa, more specifically on Acanthamoeba spp. and Dictyostelium spp.
(Table 1). In Acanthamoeba, a wide range of bacteria have been isolated, including
Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Ac-
tinobacteria, and Chlamydiae (7, 12, 14). These bacterial symbionts occupy different host
niches and have distinct lifestyles within Acanthamoeba. For instance, many studies
have reported obligate symbionts in Acanthamoeba, and they can grow only within
amoeba hosts (32, 89, 96).

However, we know very little about the bacterial symbionts in other groups of
amoebae (Table 1). Several studies focused on the symbionts in Naegleria (14, 120, 136),
probably because N. fowleri can cause a rare infection of the brain called primary
amoebic meningoencephalitis (PAM). Other than that, only a few studies have reported
bacterial symbionts in other groups of amoebae (Table 1), and there is a research gap
that demands future studies. We expect that current studies underestimate the real
diversity of bacterial symbionts in amoebae, because most current studies focus only
on limited amoeba species. We need more studies on other amoeba groups, which can
give fruitful information on the interactions between amoebae and bacteria. For
instance, P. chromatophora, a freshwater amoeba that belonged to the Rhizaria group,
recently (in evolutionary scales) caught a cyanobacterium and is transforming it into a
photosynthetic organelle, which provides an excellent study system for the origin of
the organelle (124, 126, 127). Given the long history of coevolution between amoebae
and bacteria, future studies on other groups of amoebae may discover new types of
interactions that cover the whole spectrum of symbiotic relationships.

More amoeba genomes needed. The Genomes OnLine database currently has
375,306 species with sequenced genomes (137). Of these, 33,300 genomes are from
eukaryotic organisms. However, most of these are from plants, animals, and fungi, and
only 3% of them (1,151) belong to protists (137). That is probably why the nomencla-
ture and taxonomy of protists are challenging, and their classification is being revised
and continuously updated (3, 4, 138, 139).

For amoebae, to our knowledge, there are only 41 species that have sequenced
genomes, and most of them come from Dictyostelium, Acanthamoeba, Naegleria, and
Entamoeba (137). Amoeba genomes only account for 0.1% of the sequenced eu-
karyotes and 0.01% of all sequenced organisms, and many lineages of amoebae have
no genomics information at all. Such a knowledge gap has dramatically hindered our
understanding of the ecology and evolution of amoebae as well as their interactions
with bacteria. Although barcoding techniques have begun to be applied in amoeba
studies, they are not enough. These data may be sufficient for biogeographic investi-
gation, but they cannot be used to test more specific hypotheses, such as how
amoebae interact with their symbionts. With reduced sequencing cost, future studies
should take this opportunity and sequence more amoeba genomes. More genomics
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data will help better understand the phylogeny of amoebae, the transfer of genes
across genomes, and the ecology, evolution, and cell biology of amoeba-bacterium
interactions.

Amoeba predation and bacterial microbiome. Studies of macroorganisms such as

animals have shown how important predators can be to the composition of ecological
communities and ecosystems (140). Amoebae are important predators in some envi-
ronments and, therefore, may have essential effects on the composition of bacterial
communities. As we have come to realize the importance of bacterial microbiomes for
the health of hosts, it is worth pursuing whether amoeba predators affect these
relations. We briefly mention two possibilities among many.

Plant growth and health can be strongly impacted by the bacterial microbiome in
the rhizosphere near the roots (141), and protists may have important effects (142). For
example, the experimental addition of A. castellanii strongly affected the abundance
and composition of Arabidopsis rhizosphere bacterial communities relative to controls
with no protist predators (35). The presence of amoebae also increased Arabidopsis
seedling growth. Part of this effect is that protists release excess nitrogen in the form
of ammonium (143). More work is needed to investigate the role of changes in the
bacterial community.

Amoebae might also be important in gut microbiomes. Various amoebae, especially
Entamoeba, are commonly found in vertebrate guts (144). Some are pathogens, like E.
histolytica, which can cause amoebic dysentery, and others, like Entamoeba dispar, are
commensals that might contribute to normal healthy gut function. Given the impor-
tance of predators for maintaining prey diversity in many ecosystems (145) and the
importance of bacterial microbiome diversity for human health, it seems reasonable to
speculate that predators such as amoebae sometimes are beneficial (146). E. histolytica
has been shown to have feeding preferences and, therefore, might affect gut bacterial
diversity (44). In a study of gut microbiomes of West African populations, the presence
or absence of Entamoeba (species undetermined) was associated with large differences
in bacterial communities, such that community composition could predict Entamoeba
presence with 79% accuracy (147). Individuals with Entamoeba had higher bacterial
diversity in their guts and greater uniformity between individuals, perhaps indicating
greater stability. If the absence of amoeba predators contributes to gut dysfunction, the
reintroduction of them might help restore gut microbiome function (146).

CONCLUSIONS

It has been more than 200 years since the first report of an amoeba, and we have
accumulated a large body of knowledge. Numerous studies have proven that amoebae
are an essential component of the aquatic and terrestrial ecosystems and play a vital
role in the transmission and evolution of bacterial pathogens. However, there are still
research gaps, such as detecting hidden diversity and a lack of amoeba genomes.
Future studies should benefit from the development of sequencing techniques and
reduced sequencing costs to reveal the whole picture of amoeba biology and amoeba-
bacterium interactions.
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